Authors |
Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), boikov@pnzgu.ru
Esaf'eva Viktoriya Aleksandrovna, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), viktoriya.esafieva@gmail.com
Aykashev Pavel Vladimirovich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), math@pnzgu.com
|
Abstract |
Background. There are a large number of problems, both in physics and technology, and directly in various sections of mathematics, the solution of which requires to calculate hypersingular integrals. Since direct computation of such integrals is possible only in exceptional cases, it becomes necessary to develop approximate methods. The article is devoted to the construction of approximate methods for calculating hypersynchial integrals. Particular attention is paid to the investigation of the connection between the methods for calculating singular and hypersingular integrals.
Materials and methods. In this paper, we investigate the relationship between the methods for calculating singular and hyper-singular integrals. A method is proposed for estimating from above quadrature formulas for calculating hypersingular integrals and cubature formulas for calculating polyhyper-singular integrals.
Results. The quadrature and cubature formulas optimal in precision (order) of the calculation of hypersingular and polyhyper-singular integrals with singularities of the second order are constructed. We consider hypersingular and polyhypersingular integrals with periodic kernels and on classes of periodic functions.
Conclusions. The work proposes precision-optimal methods for calculating hypersingular and polyhyper-singular integrals that can be used for problem solving in physics, engineering and computational mathematics.
|
Key words |
hypersingular integrals, polyhyper-singular integrals, quadrature formulas, cubature formulas, optimal methods
|
References |
1. Hadamard J. Lecons sur la Propagation des Ondes et les Equations de l’Hydrodynamique. Herman [Lessons on the Propagation of Waves and the Equations of Hydrodynamics. Herman]. Paris, 1903, 320 p. (reprinted by Chelsea. – New York, 1949).
2. Adamar Zh. Zadacha Koshi dlya lineynykh uravneniy s chastnymi proizvodnymi giperbolicheskogo tipa [The Cauchy problem for nonlinear equations with partial derivatives of hyperbolic type]. Moscow: Nauka, 1978, 351 p.
3. Boykov I. V. Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Chast' vtoraya. Gipersingulyarnye integraly [Approximate methods for calculating singular and hyper-singular integrals. Part two. Hyper-singular integrals]. Penza:
Izd-vo PGU, 2009, 252 p.
4. Boykov I. V. Priblizhennye metody vychisleniya singulyarnykh i gipersingu-lyarnykh integralov. Chast' pervaya. Singulyarnye integraly [Approximate methods for calculating singular and hyper-singular integrals. Part one. Singular integrals]. Penza: Izd-vo
PGU, 2005, 360 p.
5. Chikin L. A. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta [Proceedings of Kazan State University]. 1953, vol. 113, bk. 10, pp. 57–105.
6. Bakhvalov N. S. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 1970, vol. 10, no. 3, pp. 555–568.
7. Sukharev A. G. Minimaksnye algoritmy v zadachakh chislennogo analiza [Minimax algorithms in problems of numerical analysis]. Moscow: Nauka, 1989, 304 p.
8. Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoy fiziki [Theoretical bases and building of numerical algorithms in problems of mathematical physics]. Ed. by K. I. Babenko. Moscow: Nauka, 1979, 196 p.
9. Traub Dzh., Vozh'nyakovskiy Kh. Obshchaya teoriya optimal'nykh algoritmov [General theory of optimal algorithms]. Moscow : Mir, 1983, 382 p.
10. Gakhov F. D. Kraevye zadachi [Boundary problems]. Moscow: GIFML, 1963, 639 p.
11. Korneychuk A. A. Chislennye metody resheniya differentsial'nykh i integral'nykh uravneniy i kvadraturnye formuly [Numerical methods for solving differential and integral equations and quadrature formulas]. Moscow: Nauka, 1964, pp. 64–74.
12. Natanson I. P. Konstruktivnaya teoriya funktsiy [Constructive theory of functions]. Moscow; Leningrad, 1949, 688 p.
|